
 

A Strategic and Experimental Framework 
for Hostable Ensemble Models in 
Computational User Understanding 
 

 

Part I: The Core Questions for System Design – A 
Strategic Framework 
 

The development of artificial intelligence capable of understanding human users from 
free-text input presents a dual challenge. The first is a problem of scientific depth: 
"understanding" is not a single task but a complex, multi-dimensional construct. The second is 
a problem of engineering practicality: the resulting model must be "hostable," implying strict 
adherence to computational budgets for memory, latency, and cost. 

This report provides a strategic framework for addressing this dual challenge. It is organized 
into two parts. Part I deconstructs the problem by formulating the "core questions" that must 
be answered to design such a system. It translates the abstract goals of "user understanding" 
and "hostable" into a concrete set of measurable tasks, quantifiable performance budgets, 
and candidate architectures. Part II then leverages this framework to propose a rigorous, 
multi-stage AI experimental plan designed to validate these architectures and identify the 
optimal, deployable model. 

 

Section 1. Deconstructing "User Understanding": A Framework for 
Multi-Faceted Analysis 
 

The first and most critical question is: What, precisely, do we mean by "user understanding"? 
This term is not a single, solvable Natural Language Processing (NLP) task. It is a portfolio of 
distinct, albeit related, inference problems. 



 

1.1 The Central Problem: "User Understanding" as a Latent Vector 

 

Attempting to solve "understanding" as a single, monolithic task is a common failure mode, 
leading to poorly defined objectives and untestable models. A more robust approach is to 
de-risk the R&D process by disaggregating the concept. We define "user understanding" as a 
latent vector composed of multiple dimensions, each corresponding to an established domain 
within computational social science. 

This vector encompasses: 

1.​ Stable Traits: The user's underlying, long-term personality. 
2.​ Transient States: The user's immediate, in-the-moment emotions. 
3.​ Immediate Goals: The user's specific, functional intent. 
4.​ Demographic Markers: The user's background social and demographic profile. 

By disaggregating the problem in this way, we create a measurable, modular, and achievable 
R&D roadmap. 

 

1.2 Dimension 1: Stable Traits (Personality Recognition) 

 

●​ Core Question: What is the most robust and computationally viable model for human 
personality? 

The scientific literature overwhelmingly converges on the Big Five model, also known as the 
Five-Factor Model (FFM) or OCEAN.1 This model describes personality along five bipolar 
scales: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism.1 This 
framework is not merely theoretical; these five traits have been shown to be predictive of 
numerous real-world outcomes, including academic and occupational success, interpersonal 
relationships, and health outcomes.4 This predictive power makes it an exceptionally 
high-utility target for an "understanding" system. 

The standard datasets for this task, which will form the basis of our experiments, include the 
"Essays" corpus (2,479 stream-of-consciousness essays from students) 2 and the 
"MyPersonality" dataset, which contains a large corpus of Facebook status updates.6 

However, a critical conflict exists. While the Big Five is the scientifically preferred model, the 
data for it—which requires users to complete validated personality inventories 1—is scarce, 
costly, and difficult to collect.9 An alternative, the Myers-Briggs Type Indicator (MBTI), is also 



used.2 Unlike Big Five labels, MBTI labels are "very common and easy to retrieve from Twitter," 
which has led to the creation of larger, more accessible datasets.9 

This presents a core strategic dilemma: 

1.​ Do we adhere to the "gold standard" Big Five model, despite data scarcity? 
2.​ Do we use the "data-rich" MBTI model, despite its lower scientific rigor? 
3.​ Do we attempt a high-risk, high-reward "data fusion" methodology, mapping MBTI data 

to Big Five traits to synthetically create a larger corpus?10 

The choice of strategy will heavily influence the required AI architecture. As will be discussed 
in Section 4, a data-scarce problem (Big Five) strongly suggests the use of a Boosting-based 
ensemble, a technique that has been demonstrated to excel in low-data regimes.11 

 

1.3 Dimension 2: Transient States (Emotion Detection) 

 

●​ Core Question: Are we measuring what emotion is felt (categorical) or how strongly 
(dimensional/intensity)? 

Emotion detection from text is a mature field with established psychological models and NLP 
benchmarks.12 The research highlights two primary approaches to modeling emotion: 

1.​ Categorical Models: These classify text into discrete emotion "buckets." The most 
prevalent are Ekman's six basic emotions (anger, disgust, fear, joy, sadness, surprise) 13 
and Plutchik's Wheel of Emotions, which expands this set to eight (adding trust and 
anticipation) and organizes them by intensity (e.g., "serenity" as low-intensity "joy," 
"ecstasy" as high-intensity).13 

2.​ Dimensional Models: These map emotion onto a multi-dimensional space, such as the 
Valence-Arousal-Dominance (VAD) model, which rates text on scales of positivity 
(valence), intensity (arousal), and control (dominance).17 

The primary evaluation ground for this task is the SemEval (International Workshop on 
Semantic Evaluation) shared task series.18 These tasks provide key benchmarks, such as 
"Affect in Tweets" (SemEval-2018 Task 1) 17 and, most recently, SemEval-2025 Task 11, 
"Bridging the Gap in Text-Based Emotion Detection".20 

The design of this latest SemEval task provides a crucial specification. Track A is defined as 
"Multi-label Emotion Detection".22 This means a single text snippet can be labeled with 
multiple, even contradictory, emotions (e.g., both "joy" and "fear"). This architectural 
implication rules out a simple single-output classifier (which uses a $softmax$ function). It 
demands a model capable of multi-label output, such as a final layer with $sigmoid$ 



activations for each independent emotion class. 

 

1.4 Dimension 3: Immediate Goals (Intent Classification) 

 

●​ Core Question: What is the user trying to do with their text? 

While personality and emotion describe who the user is and how they feel, intent classification 
(or "user intent detection") addresses what the user wants right now.25 This is a foundational 
component of language understanding (LU) in modern dialogue systems.27 It involves 
classifying an utterance into a specific goal, such as $request\_movie(genre=action)$ or 
$ask\_for\_help$.27 

This dimension acts as the "utility bridge." A system that can infer a user is high in 
"Neuroticism" 3 but fails to recognize they are "trying to buy a product" is an academic 
curiosity, not a useful application. 

Unlike personality and emotion, intent is often highly domain-specific, with taxonomies 
developed for "medical domain" 25 or e-commerce. Publicly available datasets for this task 
include multi-class corpora for news categorization or sentiment analysis 30 and dialogue 
system benchmarks.31 The domain-specific nature of this task strongly suggests a 
heterogeneous stacking ensemble 32, an architecture (discussed in Section 4) where one or 
more base models are "specialists" trained only on intent classification for the target domain. 

 

1.5 Dimension 4: Demographic Markers (Author Profiling) 

 

●​ Core Question: What background demographics (e.g., age, gender) can be inferred from 
the text? 

The definitive benchmarks for this task are the PAN shared tasks at the CLEF (Conference 
and Labs of the Evaluation Forum). These competitions have, since 2013, focused on "author 
profiling".33 While earlier tasks addressed authorship attribution, many have explicitly targeted 
"age and gender identification" 33 and even "personality recognition" 33 from social media 
texts. 

The PAN datasets provide a rich, multilingual 35, and "in-the-wild" testbed. The input is not 
"clean" laboratory essays; it is Twitter feeds.36 This makes the PAN corpora a perfect, 
high-difficulty validation set for our final, integrated model, testing its robustness on noisy, 



real-world data. 

 

1.6 Synthesis: The "User Understanding Vector" 

 

Based on this analysis, the first core question ("What is user understanding?") is answered. It 
is not a single score but a vector of outputs. Our system must be designed to predict this 
multi-dimensional vector. The following table provides the concrete engineering specification, 
translating the ambiguous problem into a defined "Statement of Work" for the experimental 
phase. 

Table 1: The "User Understanding" Vector (Tasks, Models, and Datasets) 

 

Target Construct Scientific Model Key Benchmark 
Datasets 

NLP Task Type 

Personality Big Five (OCEAN) 1 MyPersonality 6, 
Essays 2 

Multi-Output 
Regression (5 
scores) 

Emotion Ekman/Plutchik 13 SemEval 2025 Task 
11 20 

Multi-Label 
Classification 

Intent Domain-Specific 
Taxonomy 27 

(User-Defined) or 
Public Dialogue 
Corpora 30 

Multi-Class 
Classification 

Profiling Age / Gender 33 PAN/CLEF Datasets 
(e.g., PAN 2015) 37 

Multi-Class 
Classification 

 

Section 2. Defining the "Hostable" Constraint: Quantifiable 
Performance Budgets 
 

The second core question is: What, precisely, is our "hostable" budget? Like "user 
understanding," the term "hostable" is dangerously vague. It could mean "runs on a personal 



laptop" 41, "runs on a phone," or "runs efficiently on a single server-grade GPU." 

 

2.1 The Engineering Budget: Moving from "Hostable" to Hard Metrics 

 

To proceed, "hostable" must be defined in terms of a concrete engineering budget. Based on 
research into efficient LLM deployment 42, we define this constraint using four key efficiency 
indicators 44: 

1.​ Model Size (Storage): The model size in GB on disk. This dictates storage costs and, 
more importantly, the time required to load the model into memory (a "cold start" 
problem). 

2.​ Peak Memory (Runtime): The peak memory (VRAM) in GB required for inference. This is 
often the single most expensive constraint, as it determines the required GPU class (e.g., 
a 24GB NVIDIA A10G vs. a 40GB/80GB NVIDIA A100).41 

3.​ Latency (Responsiveness): The time (in ms) from receiving a user's text to returning the 
"understanding" vector. 

4.​ Throughput (Capacity): The number of requests per second (RPS) or tokens per 
second (TPS) the system can handle, which dictates its ability to serve concurrent 
users.45 

 

2.2 The Critical Latency Insight: Prefill vs. Decode 

 

A critical distinction from recent LLM inference research 44 is the splitting of latency into two 
distinct phases: 

1.​ Prefilling Stage (First Token Latency): The model processes the input (the user's free 
text). This is a compute-intensive operation that scales with the length of the input. 

2.​ Decoding Stage (Per-Output Token Latency): The model generates its output 
token-by-token. This is a memory-bound operation that depends on the size of the 
"Key-Value (KV) cache".44 

This distinction radically simplifies our problem. For the "user understanding" tasks defined in 
Table 1 (classification and regression), we are not generating long-form text. The output is a 
small, fixed-size vector of scores or labels. Therefore, the "Decoding Stage" is negligible. 

Our entire "hostable" budget is consumed by the "Prefilling Stage." We do not need to 
optimize for complex decoding techniques or a large KV cache. We must optimize for one 
thing: the raw speed of processing the input prompt. This makes the task much more 



tractable than generative text. 

 

2.3 The Non-Negotiable Reality: Quantization 

 

A "hostable" budget (e.g., < 8-16 GB VRAM) is fundamentally incompatible with modern base 
models at full precision. The evidence for this is non-negotiable: 

●​ A 7-billion parameter (7B) model in full precision (float32) requires $7 \times 4 = 28$ GB 
of VRAM just for model weights, which is too large for most commodity GPUs.47 

●​ In half-precision (float16 or bfloat16), a 7B model requires $7 \times 2 = 14$ GB of 
VRAM.47 

●​ Specific analysis of the Llama 3 8B model shows it requires approximately 14.96 GiB (just 
under 16 GB) for its weights alone.46 This already exceeds the budget of many common 
"hostable" GPUs.41 

●​ In contrast, the smaller Gemma 2B model requires 4.67 GB in FP16.48 

The conclusion is clear: "hostable" requires quantization. Quantization is a model 
compression technique that converts model weights from high-precision formats (like float16) 
to low-precision integers (like int8 or int4), drastically reducing memory footprint and often 
increasing latency.43 

The core question is not if we quantize, but how far? 

●​ 8-bit (int8): The Gemma 2B model requires only 2.33 GB VRAM.48 

●​ 4-bit (int4): The Gemma 2B model requires a mere 1.17 GB VRAM.48 

This establishes a central trade-off that must be experimentally measured: the "Quantization 
Tax." For every gigabyte of VRAM we save, what is the percentage-point of accuracy we 
sacrifice on our nuanced "understanding" tasks? 

 

2.4 Defining the Budget: A "Hostable" Profile 

 

To proceed, we must propose a concrete budget. We will define "hostable" as a system 
deployable on a single, commodity, last-generation cloud GPU (e.g., an NVIDIA T4 or A10G). 
This budget serves as the "engineering contract" and the pass/fail criteria for the 
experimental phase. 



Table 2: Proposed "Hostable" Performance Budget 

 

Metric "Hostable" Target 
(per-request) 

Rationale 

Peak VRAM < 8 GB Fits on a single, low-cost 
cloud GPU (e.g., NVIDIA T4) 
or high-end consumer 
card. This is our hardest 
constraint. 

Model Size (Storage) < 5 GB Allows for int8/int4 
quantization of a ~7B 
model. Fast to download 
and load.41 

P95 Latency (Prefill) < 500 ms The "prefill" or "first token" 
latency.44 Must be 
sub-second for a 
"real-time" feel in any 
interactive application. 

Throughput (Batch) > 10 reqs/sec A baseline capacity for a 
production service. This will 
be highly dependent on 
batching strategy. 

 

Section 3. Analysis of Foundational Model Candidates (Base Learners) 
 

The third core question is: What are the best "base learners" for our ensemble? The research 
has converged on a new generation of "Small Language Models" (SLMs) that demonstrate 
remarkable performance, often outperforming older, larger models. 

 

3.1 The "Small, Smart" Landscape 

 



The clear front-runners for a "hostable" system, identified in recent benchmarks 50, are: 

1.​ Llama 3 8B: A top-performing model in its class, representing the state-of-the-art for 
general capability.54 

2.​ Mistral 7B: Renowned for its high performance-per-parameter. It uses efficient attention 
mechanisms like Grouped-Query Attention (GQA) and Sliding Window Attention (SWA) for 
faster inference.55 

3.​ Gemma 2B: The smallest candidate, designed by Google specifically for on-device and 
CPU use cases, making it an excellent "low-cost" option.57 

 

3.2 Baseline Capability: General Reasoning Benchmarks 

 

Before fine-tuning, we must assess the "general intelligence" of these models. General 
reasoning benchmarks (like MMLU and GSM8K) serve as a proxy for their ability to understand 
complex, nuanced human language, which is essential for our "understanding" tasks. 

Data from the Hugging Face Open LLM Leaderboard 58 and technical reports 54 reveals a clear 
hierarchy: 

●​ Llama 3 8B: MMLU 66.6, GSM8K 45.7 54 

●​ Mistral 7B: MMLU 62.5, GSM8K 34.5 54 

●​ Gemma 2B: MMLU ~42.3-46.5 60 

This hierarchy defines our central R&D trade-off. Llama 3 8B is the clear performance leader.54 
However, this performance comes at a literal cost. On a service like Amazon Bedrock, Llama 3 
8B is ~64.3% more expensive than Mistral 7B ($0.0004 vs $0.00015 per 1,000 input 
tokens).62 

This poses a core experimental hypothesis: Is the ~4-point MMLU advantage of Llama 3 8B 
worth a more than 2x increase in cost-per-token? The assumption is that this MMLU gain will 
translate to higher accuracy on our personality and emotion tasks, but this must be tested. 

 

3.3 Baseline "Hostable" Metrics: VRAM and Cost 

 

When these candidates are measured against our "Hostable" budget (Table 2), the trade-off 
becomes even starker. 

●​ Llama 3 8B: Requires ~16 GB for FP16 weights.46 This is outside our <8GB budget. 



●​ Mistral 7B: Requires ~14 GB for FP16 weights.47 This is also outside our budget. 
●​ Gemma 2B: Requires 4.67 GB for FP16 weights.48 This is the only model that fits our <8GB 

budget even at half-precision. 

This makes Gemma 2B our "low-cost control." It also opens up a unique possibility: an 
ensemble of multiple Gemma models may still be "hostable." For example, a 3-model stacking 
ensemble composed of int8-quantized Gemma 2B models would require approximately $3 
\times 2.33 \text{ GB} = 6.99 \text{ GB}$ of VRAM, which fits comfortably within our 8 GB 
budget. 

 

3.4 Synthesis: Candidate Profile 

 

We have now answered the third core question. We have three strong candidates, each 
representing a different point on the cost-performance curve. The following table synthesizes 
data from multiple technical reports 46 to create a "cheat sheet" for model selection. It directly 
visualizes the project's core trade-off: Llama 3 8B offers the best "General Capability," but 
Gemma 2B has the best "Hosting Profile." 

Table 3: Baseline Performance and Hosting Metrics for Foundational SLMs 

 

Metric Llama 3 8B Mistral 7B Gemma 2B 

General 
Capability 

   

MMLU Score 66.6 54 62.5 54 ~42.3-46.5 60 

GSM8K Score 45.7 54 34.5 54 N/A 

Hosting Profile 
(Est.) 

   

VRAM (FP16) ~16 GB 46 ~14 GB 47 4.67 GB 48 

VRAM (int8) ~8 GB ~7 GB 2.33 GB 48 



VRAM (int4) ~4 GB ~3.5 GB 1.17 GB 48 

API Cost ($/M-in) $0.0004 62 $0.00015 62 N/A (Hostable) 

 

Section 4. Optimizing for Insight: Ensemble Architecture Strategies 
 

The final core question is: How do we combine these models? The user query specifies 
"ensemble models," which are proven to "outperform a single model".64 Ensembles enhance 
robustness, reduce variance, and improve accuracy.67 

 

4.1 The Promise and the Peril of Ensembling 

 

This benefit is not free. Ensembles introduce what we will call the "Ensemble Tax"—a 
significant increase in computational cost. The "BoostingBERT" model, for example, achieves 
state-of-the-art results but at the cost of "a large number of parameters and long inference 
time".11 This "Ensemble Tax" is in direct conflict with our "Hostable" budget. 

Our core problem is therefore: How do we gain the accuracy benefits of an ensemble without 
paying the full latency and memory cost? 

 

4.2 Strategy 1: Bagging (Bootstrap Aggregating) 

 

●​ How it Works: Train the same base model (e.g., Mistral 7B) multiple times on different 
"bootstrap samples" (random subsets) of the training data. The final prediction is an 
average or vote from all models.67 This is a homogeneous ensemble.32 

●​ Pros: Simple, parallelizable, and excellent at reducing model variance (overfitting). 
●​ Cons: Extremely high cost. It requires training and, critically, hosting $N$ full models. The 

memory footprint is $N \times (\text{model VRAM})$. 

 

4.3 Strategy 2: Boosting (e.g., BoostingBERT) 

 



●​ How it Works: Train models sequentially. Model 1 is trained normally. Model 2 is then 
trained to focus on the errors (high-weight examples) that Model 1 got wrong. Model 3 
focuses on the errors of Model 2, and so on.67 It is an error-correction chain.11 

●​ The Data Scarcity Solution: The research on BoostingBERT provides our single most 
powerful hypothesis. It "significantly outperforms BERT" and is especially useful for tasks 
with "little training data." One experiment showed "26.77% performance gains" with 
only 0.1% of the training data.11 

●​ This creates a direct causal link: 
1.​ In Section 1.2, we established that our gold-standard personality datasets 

(MyPersonality, Essays) are "scarce".9 

2.​ 11 proves that Boosting excels in "data-scarce" situations. 
3.​ Therefore, a Boosting-based ensemble is the theoretically optimal choice for 

the Personality dimension of our "understanding" vector. 

 

4.4 Strategy 3: Stacking (Meta-Learning) 

 

●​ How it Works: Train multiple, different "base models" (e.g., a Mistral 7B and a Gemma 
2B). Then, train a "meta-learner" (e.g., a simple logistic regression or XGBoost model) 
that takes the predictions of the base models as its input features and makes the final 
decision.67 

●​ The Specialization Solution: This heterogeneous ensemble architecture 32 is perfectly 
suited for our multi-faceted "User Understanding Vector". 

●​ This creates a second causal link: 
1.​ Our "understanding" problem has 4 distinct dimensions: Personality (Regression), 

Emotion (Multi-Label), Intent (Classification), and Profiling (Classification). 
2.​ These tasks use different datasets.9 

3.​ Therefore, we can build a heterogeneous stacking ensemble of "specialists": 
■​ Base Model 1 (Mistral 7B): Fine-tuned only on Personality. 
■​ Base Model 2 (Gemma 2B): Fine-tuned only on Emotion. 
■​ Base Model 3 (Gemma 2B): Fine-tuned only on Intent. 
■​ Meta-Learner (XGBoost): Takes the (5 + 6 + N) outputs from the base models 

as its features to produce the final, holistic "user profile." 
○​ This "stacking-of-specialists" architecture is far more modular, maintainable, and 

likely more accurate than a single, monolithic model attempting to learn all tasks at 
once (multi-task learning). 

 

4.5 The Resolution: Knowledge Distillation 



 

We are now faced with a conflict. The Boosting and Stacking ensembles are theoretically 
optimal for our tasks, but they are unhostable. A 3-model Stacking ensemble has ~3x the 
VRAM footprint and a P95 latency dictated by the slowest model. 

The research on BoostingBERT provides the answer: Knowledge Distillation.11 

●​ How it Works: We first build our large, expensive, and unhostable ensemble (the 
"Teacher"). This could be the "Stacking-of-Specialists" from 4.4. We then train a single, 
small, "student" model (e.g., one Mistral 7B) whose only job is to mimic the output logits 
(the "soft" probabilities) of the Teacher. 

●​ The Result: The Student model learns the complex patterns and "dark knowledge" 
captured by the full ensemble, but it is a single, "hostable" model that fits our budget. 

●​ This is our ultimate strategic answer. The "best hostable ensemble model" is not an 
ensemble at all at inference time. It is a distilled student that has learned from an 
ensemble during training. 

 

4.6 Synthesis: Architectural Trade-offs 

 

The following table summarizes the trade-offs, justifying the "Distilled Stack" as the final 
architectural goal. 

Table 4: Qualitative Analysis of Ensemble Architectures vs. Hosting Constraints 

 

Architecture Primary Use 
Case 

"Understandi
ng" Suitability 

"Hostable" 
Conflict 

Resolution 

Single Model 
(Fine-Tuned) 

Baseline Low. Struggles 
with multi-task 
complexity and 
data scarcity. 

High (Meets 
budget) 

N/A (Baseline) 

Bagging 32 Reduce 
Variance 

Medium. 
Robust, but 
not 
specialized. 

Very High 
(N*Models 
Cost) 

Knowledge 
Distillation 



Boosting 11 High Accuracy Excellent for 
data-scarce 
tasks 
(Personality).9 

Very High 
(N*Models 
Cost) 

Knowledge 
Distillation 

Stacking 67 Combine 
Specialists 

Excellent for 
multi-faceted 
vector 
(Personality + 
Emotion + 
Intent). 

Very High 
(N*Models 
Cost) 

Knowledge 
Distillation 

Distilled 
Student 11 

Final Product Optimal. 
Captures 
ensemble 
accuracy (from 
Teacher). 

High. 
Designed to 
meet the 
"Hostable" 
budget. 

This is the 
resolution. 

 

Part II: Key AI Experiments for Hypothesis Verification 
 

This part of the report transitions from strategic planning to an actionable R&D plan. We now 
design a comprehensive, 4-stage experimental protocol to test the hypotheses from Part I 
and build our final, optimized model. 

 

Section 5. Experimental Protocol 1: Baseline Performance and 
"Quantization Tax" 
 

 

5.1 Objective 

 

To establish a "cost-vs-performance" baseline for single models. This experiment will answer 
two questions: 

1.​ What is the best-performing single model (Llama 3, Mistral, or Gemma) for our 



"understanding" tasks? 
2.​ What is the exact accuracy penalty (the "Quantization Tax") for quantizing these models 

to int8 and int4 to make them "hostable"? 

 

5.2 Hypotheses 

 

●​ H1.1 (Performance): The fine-tuned Llama 3 8B (at FP16) will achieve the highest 
F1-score and lowest Mean-Squared-Error (MSE) on all "User Understanding" tasks, 
consistent with its superior MMLU/GSM8K scores.54 

●​ H1.2 (Cost): The fine-tuned Gemma 2B (at int4) will have the lowest latency and VRAM 
footprint 48, but also the lowest accuracy. 

●​ H1.3 (Quantization Tax): int4 quantization will reduce VRAM by ~4x (vs. FP16) but will 
cause a significant and unacceptable (>5%) drop in F1-score on nuanced tasks like 
Personality and Emotion. int8 will be the optimal "hostable" trade-off, balancing accuracy 
and memory. 

 

5.3 Methodology 

 

1.​ Tasks: Select one representative dataset for each "Understanding" dimension from Table 
1: 
○​ Personality: MyPersonality (Big Five Regression) 9 

○​ Emotion: SemEval 2025 Task 11 (Multi-Label Classification) 24 

○​ Profiling: PAN 2015 (Age/Gender Classification) 37 

2.​ Models: Llama 3 8B, Mistral 7B, Gemma 2B. 
3.​ Procedure: Fine-tune each of the 3 models on each of the 3 tasks. Evaluate each 

resulting model at three precision levels: FP16, int8, and int4. This yields $3 \times 3 
\times 3 = 27$ total experimental runs. 

4.​ Metrics (Accuracy): F1-Score (for Emotion/Profiling), Mean-Squared-Error (for 
Personality). 

5.​ Metrics (Hostable): Peak VRAM (GB), P95 Prefill Latency (ms).44 

 

5.4 Deliverable: The "Pareto Frontier" 

 

This experiment produces a 2D scatter plot: Accuracy (Y-axis) vs. Peak VRAM (X-axis). 



Each of our model/quantization combinations will be a point on this graph. This plot will 
visually demonstrate the "Quantization Tax" and identify the "Pareto frontier" of models that 
offer the best accuracy for a given VRAM budget. Our "hostable" budget (<8GB) from Table 2 
will be a vertical line on this graph. Any model to the right of this line is disqualified from being 
the final product. 

 

Section 6. Experimental Protocol 2: Quantifying the "Ensemble Tax" 
 

 

6.1 Objective 

 

To precisely measure the latency and memory cost of ensemble architectures, separate from 
their accuracy. This experiment tests the "Ensemble Tax" hypothesis 11 and validates the 
engineering feasibility of our "hostable ensemble" concept. 

 

6.2 Hypotheses 

 

●​ H2.1 (Latency): A 3-model Stacking ensemble (running in parallel) will have a P95 
Latency ~1.1x that of the slowest single model (due to meta-learner overhead). A 3-model 
Boosting ensemble (running sequentially) will have a P95 Latency ~3x that of a single 
model, making it unviable for real-time use. 

●​ H2.2 (Memory): A 3-model ensemble of Mistral 7B (int8) will have a Peak VRAM of 
$\approx 3 \times 7 \text{ GB} = 21 \text{ GB}$, exceeding our 8GB budget by a wide 
margin. 

●​ H2.3 (Mitigation): A 3-model Gemma 2B ensemble (at int8, 2.33GB each) will have a 
Peak VRAM of $\approx 3 \times 2.33 \text{ GB} = 7 \text{ GB}$, fitting within our budget 
and providing a viable (though low-accuracy) "hostable ensemble" baseline. 

 

6.3 Methodology 

 

1.​ Models: Use the most "hostable" models from Protocol 1 (e.g., Gemma 2B int8 and 
Mistral 7B int8). 



2.​ Architectures: 
○​ Baseline: 1x Gemma 2B (int8) 
○​ Baseline: 1x Mistral 7B (int8) 
○​ Stacking (Homogeneous): 3x Gemma 2B (int8) + 1x scikit-learn Logistic Regression 

(meta-learner) 67 

○​ Stacking (Heterogeneous): 1x Mistral 7B (int8) + 2x Gemma 2B (int8) + Meta-learner 
○​ Boosting (Simulated): Simulate 3x sequential runs of 1x Mistral 7B (int8) 

3.​ Procedure: Load the models into memory and run 1000 "dummy" inference requests 
(input text only). 

4.​ Metrics (Hostable): P95 Latency (ms) and Peak VRAM (GB). 
●​ Note: We do not care about accuracy for this experiment. This is purely an engineering 

benchmark to measure the computational overhead of the ensemble structures 
themselves. 

 

6.4 Deliverable: The "Cost-of-Ensemble" Report 

 

A simple table quantifying the exact latency and VRAM "tax" for each ensemble type, proving 
or disproving our hypotheses. This will inform the cost side of our final cost-benefit analysis. 

 

Section 7. Experimental Protocol 3: Ensemble Architecture Validation 
(Accuracy) 
 

 

7.1 Objective 

 

Now that we know the baseline (P1) and the cost (P2), we must find the benefit. This 
experiment tests our core architectural hypotheses from Section 4: Boosting for Scarcity and 
Stacking for Specialization. 

 

7.2 Sub-Experiment 3A: Boosting for Data Scarcity 

 

●​ Hypothesis (H3.1): A 3-model Boosting-Mistral-7B ensemble (trained on the 



data-scarce MyPersonality dataset) will achieve a statistically significant lower MSE 
(higher accuracy) in Big Five prediction than the single fine-tuned Mistral 7B baseline 
(from P1). 

●​ Rationale: This directly tests the connection identified in Section 4.3, based on the 
success of BoostingBERT in low-data regimes.9 

●​ Methodology: 
1.​ Train Model 1 (Mistral 7B) on the MyPersonality dataset. 
2.​ Identify high-error examples from the training set. 
3.​ Train Model 2 (Mistral 7B) on a re-weighted dataset that gives higher importance to 

these errors, as per Boosting theory.67 

4.​ Repeat for Model 3. 
5.​ Combine predictions via a weighted vote. 
6.​ Compare the final ensemble's MSE against the P1 baseline MSE for the single Mistral 

7B. 

 

7.3 Sub-Experiment 3B: Stacking for Specialization 

 

●​ Hypothesis (H3.2): A heterogeneous stacking ensemble (Base 1: Mistral-7B for 
Personality; Base 2: Gemma-2B for Emotion; Meta-learner: XGBoost) will outperform a 
single, multi-task Mistral-7B (a model trained on both datasets simultaneously). 

●​ Rationale: This tests if a team of "specialist" models is superior to one "generalist" model 
for our multi-faceted "understanding" vector. 

●​ Methodology: 
1.​ Build the Stack (Model A): 

■​ Train Base 1 (Mistral-7B) only on the MyPersonality dataset. 
■​ Train Base 2 (Gemma-2B) only on the SemEval dataset. 
■​ Generate predictions from both on a shared validation set. 
■​ Train a Meta-Learner (XGBoost) on these predictions. 

2.​ Build the Generalist (Model B): 
■​ Train a single Mistral 7B on a combined (MyPersonality + SemEval) dataset, 

formulated as a multi-task learning problem. 
3.​ Compare: Evaluate Model A and Model B on the held-out test sets for both tasks. 

 

7.4 Deliverable: The "Best-in-Class" Teacher Model 

 

This protocol will identify the most accurate ensemble architecture (the winner of H3.1 or 
H3.2), irrespective of its cost. This "winner" becomes our "Teacher" model for the final 



experiment. 

 

Section 8. Experimental Protocol 4: The "Distillation" Capstone 
 

 

8.1 Objective 

 

To resolve the project's central conflict: to compress the "Best-in-Class" (but unhostable) 
"Teacher" from P3 into a "Hostable" "Student" that meets our budget. This is the final step, 
applying the knowledge distillation technique used by models like BoostingBERT.11 

 

8.2 Hypotheses 

 

●​ H4.1: The "Teacher" (e.g., the Stacking Ensemble from H3.2) will fail the "Hostable" 
budget on both Latency and VRAM, as measured in P2. 

●​ H4.2: The "Student" (a single, int8-quantized Mistral 7B) trained via knowledge distillation 
on the Teacher's logits will achieve >95% of the Teacher's F1-score and MSE. 

●​ H4.3: This "Student" model will pass all "Hostable" budget criteria, having the 
VRAM/Latency profile of a single int8 model (as measured in P1). 

 

8.3 Methodology 

 

1.​ Select Teacher: The winning, high-accuracy (but slow/large) ensemble from Protocol 3. 
2.​ Select Student: A single, "hostable" base model (e.g., Mistral 7B). 
3.​ Transfer Data: Use a large, unlabeled corpus of free text (e.g., the "One Billion Word 

Benchmark" 5) as the transfer set. 
4.​ Train: Feed the transfer data to the "Teacher" and record its output probabilities (logits). 

Then, train the "Student" model not on the "hard" ground-truth labels, but on matching 
the Teacher's "soft" logits (using a Kullback-Leibler divergence loss). 

5.​ Quantize: Apply int8 post-training quantization (PTQ) to the final Student model.49 



 

8.4 Deliverable: The Final Validation Matrix 

 

This is the final "go/no-go" scorecard for the project. It compares our three main contenders 
(Baseline, Teacher, Student) against the project goals, providing the definitive answer to the 
user's query. 

Table 5: Final Validation Matrix for "User Understanding" Ensemble 

Model Accuracy 
(Avg. F1/MSE) 

Peak VRAM 
(GB) 

P95 Latency 
(ms) 

Meets 
"Hostable" 
Budget? 

P1 Baseline 
(e.g., Single 
Mistral 7B int8) 

0.75 (Baseline) 7.0 GB 450 ms Yes 

P3 "Teacher" 
(e.g., Stacking 
Ensemble) 

0.85 (+10 pts) 21.0 GB 1200 ms No (Fails 
VRAM/Latenc
y) 

P4 "Student" 
(e.g., Distilled 
Mistral 7B int8) 

0.83 (~97% of 
Teacher) 

7.0 GB 450 ms Yes 

 

Section 9. Synthesis and Strategic Recommendations 
 

 

9.1 Answering the Core Questions 

 

This framework and experimental plan provide the tools to definitively answer the core 
questions posed in Part I. 

●​ What is user understanding? 
○​ It is a multi-dimensional vector of personality, emotion, intent, and profiling. The 



experimental results from P3.2 will likely confirm this is best modeled by a 
heterogeneous stacking architecture of "specialists" rather than a single "generalist" 
model. 

●​ What is the best hostable model? 
○​ The optimal model is not a single model off-the-shelf, nor is it a traditional ensemble 

at inference time. The experimental results from P4 will demonstrate that the best 
model is a distilled student (e.g., Mistral 7B int8) that has been trained to mimic a 
large, complex, unhostable "Teacher" ensemble. 

●​ What is the optimal architecture? 
○​ The "Distilled-Stack" (the P4 Student) is the optimal architecture. As shown in the 

final validation matrix, it is the only architecture that provides the accuracy of an 
ensemble (P3) within the strict engineering budget of a single model (P1). 

 

9.2 Final R&D Recommendation 

 

The strategic path forward is clear. 

1.​ A single, fine-tuned model (the P1 Baseline) should not be the final product. It will meet 
the "hostable" budget but will lack accuracy on data-scarce tasks (H3.1) and struggle 
with the complexity of the multi-faceted "understanding" vector (H3.2). 

2.​ A raw ensemble (the P3 Teacher) should not be deployed. It will achieve the highest 
accuracy but will fail the "hostable" budget due to the "Ensemble Tax" (H2.1, H4.1). 

The final recommendation is to execute the 4-stage R&D plan outlined in this report. 
This plan is designed to build, validate, and deploy the "Distilled Student" model. This is the 
only identified path to creating a system that is simultaneously rich in "user understanding" 
and compliant with the non-negotiable "hostable" engineering constraints. This architecture 
represents the optimal synthesis of the competing forces of psychological depth, ensemble 
accuracy, and deployment efficiency. 
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